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 !AR ! d"0 " i#"0; AR$; (18)

ensuring that DU is covariant.
The nonlinear realization (14) embeds the NGB’s from

SU%3&! SU%2& inside a larger manifold corresponding to
SU%3&L ' SU%3&R ! SU%3&. We can describe the removal
of the extra pionic degrees of freedom in physical terms as
follows. We begin by treating AL and AR as independent
gauge fields, where AL is a general SU%3& matrix field, and
AR belongs to the unbroken SU%2& subgroup. Cor-
respondingly, the " and "0 in the transformation (14) are
independent rotations. Now suppose that the AR kinetic
term vanishes, corresponding to very strong coupling, i.e.,
%(1=g2R&TrFR#$F

#$
R ! 0. AR then becomes an auxiliary

field with equation of motion determined by the SU%3&L '
SU%3&R chiral-invariant kinetic term, F2 TrjD#Uj2. Noting

that PARP ! AR and Tr%AR& ! 0, we obtain precisely the
locking condition (15) as the solution for AR as a function
of AL and U. This allows us to ‘‘eat and decouple’’ the
unwanted isovector NGB’s in U. Using the gauging of
Eq. (15) and expanding the resulting kinetic term in powers
of 1=F we see that %F2=2&jD#Uj2 ! jD#Hj2 " %@#%&2 "
. . . , and we are therefore dealing with a little Higgs theory.
Thus, in a sense, a little Higgs theory is just a technicolor
theory with the usual chiral field U replaced by a nonlinear
realization.

For any chiral theory based on a unitary matrix U trans-
forming as U ! ei"Ue(i"0 and gauge fields AL and AR that
likewise transform under " and "0 as in Eqs. (17) and (18),
the gauged WZW term is given explicitly by KRS
Eq. (4.18):
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where N is an integer; e.g., in the QCD chiral Lagrangian,
N ! Nc ! 3 is the number of colors. Here ' ! %dU&Uy
and ( ! UydU. The function !0%U& is given by Eq. (8),
which in four dimensions reads

 !0%U& ! 2N
15&2F5

Z
M4

Tr# ~&%d ~&&4$ " . . . (20)

In the present case we need only substitute the repre-
sentation of U given in Eq. (13) and the locking of AR to AL
and U given in Eq. (15). We can then expand to a given
order in 1=F to obtain the topological interactions of the
mesons and gauge fields. We are presently ignoring U%1&
factors, and identify the unbroken SU%2& subgroup with
electroweak gauge interactions (we will also presently
ignore the U%1&Y gauge subgroup):

 AL ! W 0
0 0

# $
; (21)

where W ! gWa)a=2. Defining

 AR ! AL " ÂR 0
0 0

 !
; (22)

we find to second order in 1=F:
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Here Ad
$
B ) A ~dB( Ad

 
B. The expansion for ( is given

(to all orders in 1=F) by substituting H ! (H and %!
(% into ('.

The leading WZW interactions involving W and NGB’s
appear at order 1=F:

 !WZW ! (N

8&2
%%%
3
p

F

Z
M4

%Tr%F2
W& " . . . ; (25)

where FW ! dW ( iW2. As the result of SU%2& matrix
identities, no additional interactions appear through order
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basic idea: classic result is the closed form for gauged WZW term in 
QCD-like chiral lagrangian SU(N)xSU(N)/SU(N)

derive analog for SU(3)/SU(2) (a special case: 
doesn’t extend to N>3)

ΓWZW (Φ, A,A0) = Γ0(Φ) +
p

4π2

∫

M4

4∑

i=1

Li + LG.I.

L1 = A0Φ†dΦdΦ†dΦ−
(
Φ†AdΦ + dΦ†AΦ

)
dΦ†dΦ ,

L2 = iA0dA0Φ†dΦ− idA0Φ†AΦΦ†dΦ− 2iA0Φ†AΦdΦ†dΦ +
i

2
[
(dΦ†AΦ)2 − (Φ†AdΦ)2

]

+
i

4
[
Φ†(AdA + dAA)dΦ + dΦ†(AdA + dAA)Φ

]
− i

2
Φ†(AdA + dAA)ΦΦ†dΦ− i

2
Tr(AdA)Φ†dΦ

+
i

4
[
Φ†dAΦ(dΦ†AΦ +Φ †AdΦ) + Φ†AΦ(Φ†dAdΦ− dΦ†dAΦ)

]
,

L3 = A0dA0Φ†AΦ + A0

[
−Φ†AΦd(Φ†AΦ) +

1
3
Tr(AdA)

]
− 1

6
Φ†A2Φ(Φ†AdΦ + dΦ†AΦ)

+
1
6
Φ†AΦ(Φ†A2dΦ− dΦ†A2Φ) +

1
6
Φ†(dAA2 −A2dA)Φ +

1
3
(Φ†A3dΦ + dΦ†A3Φ)− 2

3
Φ†A3ΦΦ†dΦ

− 1
3
Tr(A3)Φ†dΦ− 1
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Φ†(AdA + dAA)ΦΦ†AΦ− 1

3
Tr(AdA)Φ†AΦ ,

L4 = − i

4
A0Tr(A3)− 3i

4
Φ†AΦΦ†A3Φ− i

4
Φ†AΦTr(A3) .

LG.I. = c1

[
Φ†(dA− iA2)Φ

]2

+ c2 iΦ†(dA− iA2)ΦDΦ†DΦ

+ c3 Φ†(dA− iA2)2Φ

+ c4 Φ†DΦ
[
Φ†(dA− iA2)DΦ− (DΦ†)(dA− iA2)Φ

]
,

+ c5 dA0Φ†(dA− iA2)Φ
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• intro- anomalies and extensions of electroweak SM

• a 2-d example

• the 4-d action

• equivalence to SU(3)xSU(3)/SU(3)

• reduction to SU(2)xU(1)/U(1)

OUTLINE



CAN’T HIDE FERMIONS
Common situation in model building: add some 
fermion content to a consistent theory → spoil 
anomaly cancellation. 

Appears e.g. in little higgs / technicolor models.  
consider as example SU(3)/SU(2) little higgs

For consistent (not necessarily complete) theory, need 
spectator fermions in the linear theory, or extra 
operator (WZW term) in the nonlinear theory  
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u
d
d′





L

EL =




ν
e
ν′





L

uR, dR, d′
R

νR, eR, ν′
R

1) generation-independent gauging

QL = (3, 3) 1
3

uR = u′
R = (3, 1) 2

3

dR = (3, 1)− 1
3

eR = (1, 1)−1

νR = ν′
R = (1, 1)0

EL = (1, 3)− 1
3

SU(3)c × SU(3)L × U(1)Xquarks

leptons

can give mass to exotic fermions using triplet higgs fields

H1 = H2 = (1, 3)− 1
3

Kaplan Schmaltz 04 



little higgs idea - fields acquire aligned VEV’s

H ∼ Λ




0
0
1





scalar fields: 
12 = 2 + 5 + 4 + 1

radial modes
eaten by heavy 
gauge fields SM Higgs

singlet

Just this fermion content is inconsistent: SU(3)W, U(1)X 
anomalies

(ignoring all questions of vac.alignment, fine-tuning, etc.)



extra fermion content equivalent to e.g. N copies of 
ΨL = (1, 3)− 1

2
, qR = (1, 1) 3

2

extra operator is WZW term for SU(3)/SU(2)

N1ΓWZW (Φ1) + N2ΓWZW (Φ2)

N1 + N2 = 4Ngenerations

N = 4Ngenerations ∼ 12

N=12 an important clue to UV completion 

L ∼ N1εµνρσ

[
1

96π2F 4
H†DµHH†F νρ

W DσH − 2
8π2
√

3F
ηTr(Fµν

W F ρσ
W ) +

2
16π2F

DµH†F νρ
W Cσ + . . .

]

+N2

[
η → −η, H → −H

]
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2) generation-independent gauging

QL = (3, 3) 1
3

uR = u′
R = (3, 1) 2

3

dR = (3, 1)− 1
3

QL = (3, 3̄)0
uR = (3, 1) 2

3

dR = d′R = (3, 1)− 1
3

generation 1,2 generation 3

Fermion anomalies cancel.  In this case: 
N1ΓWZW (Φ1) + N2ΓWZW (Φ2)

N1 + N2 = 0
L ∼ N1εµνρσ

[
1

96π2F 4
H†DµHH†F νρ

W DσH − 2
8π2
√

3F
ηTr(Fµν

W F ρσ
W ) +

2
16π2F

DµH†F νρ
W Cσ + . . .

]

+N2

[
η → −η, H → −H

]

N1=-N2 counts “colors” of UV completion, e.g. 2 copies of 
SU(3)xSU(3)/SU(3), and strongly coupled SU(2). N1≠ 0 ⇒ breaks 

potential NGB or T parity



Also more subtle non-decoupling effects

Example: extra generation adds to one-loop S 
parameter

S ∼
∑ 1

6π
∼ 2

3π

⇒ Degenerate heavy fermions don’t decouple

Figure 12: Branching fraction versus heavy neutrino mass m4 for decay modes M+
1 → !+

1 !+
2 M−

2

not yet constrained by direct experimental searches. The regions below the curve are theoretically
allowed.
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W+

W+

N

!+
1

!+
2

u

d̄

W+

!+
1

N

!+
2

W+ d

ū

Figure 13: (a) Left: Feynman diagram for like-sign dilepton signature via WW fusion in hadronic
collisions; (b) right: the exchanged coherent diagram which is same as heavy neutrino production
and decay.

We discuss the signatures for a heavy Majorana neutrino and the sensitivity to probe the
parameters m4 and V!4 at the Tevatron and the LHC.

As for the production of a heavy Majorana neutrino at hadron colliders, the represen-
tative diagrams at the parton level are depicted in Fig. 13, with the exchange of final state
leptons implied. The first diagram is via WW fusion with a t-channel heavy neutrino N4

exchange, directly analogous to the process of 0νββ. The second diagram is via s-channel
N4 production and subsequent decay. Although in our full calculations, we have coher-
ently counted for all the contributing diagrams of like-sign dilepton production including
possible identical particle crossing, it is informative to separately discuss these two classes
of diagrams due to their characteristically different kinematics.

The scattering amplitude for the process in Fig. 13(a) is proportional to V!14V!24 and
the cross section can be expressed as

σ
(

pp → W±W± → !±1 !±2 X
)

= (2 − δ!1!2) |V!14V!24|2 σ0(WW ), (4.1)

where σ0(WW ) is the “bare cross section”, independent of the mixing parameters. We
show the bare cross section at the LHC energy of 14 TeV versus the heavy neutrino mass

– 26 –

Figure 12: Branching fraction versus heavy neutrino mass m4 for decay modes M+
1 → !+

1 !+
2 M−

2

not yet constrained by direct experimental searches. The regions below the curve are theoretically
allowed.

u d

d̄ ū
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LETTERS

Difference in direct charge-parity violation between
charged and neutral B meson decays
The Belle Collaboration*

Equal amounts of matter and antimatter are predicted to have
been produced in the Big Bang, but our observable Universe is
clearly matter-dominated. One of the prerequisites1 for under-
standing this elimination of antimatter is the nonconservation
of charge-parity (CP) symmetry. So far, two types of CP violation
have been observed in the neutral Kmeson (K0) and Bmeson (B0)
systems: CP violation involving the mixing2 between K0 and its
antiparticle !KK 0 (and likewise3,4 for B0 and !BB0), and direct CP viola-
tion in the decay of each meson5–8. The observed effects for both
types of CP violation are substantially larger for the B0 meson
system. However, they are still consistent with the standard
model of particle physics, which has a unique source9 of CP viola-
tion that is known to be too small10 to account for the matter-
dominated Universe. Here we report that the direct CP violation
in charged B6RK6p0 decay is different from that in the neutralB0

counterpart. The direct CP-violating decay rate asymmetry,AK+p0

(that is, the difference between the number of observed B2RK2p0

event versus B1RK1 p0 events, normalized to the sum of these
events) is measured to be about 17%, with an uncertainty that is
reduced by a factor of 1.7 from a previous measurement7. How-
ever, the asymmetryAK+p+ for !BB0?K{pz versus B0RK1p2 is at
the 210% level7,8. Although it is susceptible to strong interaction
effects that need further clarification, this large deviation in direct
CP violation between charged and neutral B meson decays could
be an indication of new sources of CP violation—which would
help to explain the dominance of matter in the Universe.

Existing measurements of CP asymmetries in K and B meson
decays can be explained using a single source of CP violation from
the mechanism of the Kobayashi–Maskawa model. Proposed9 in
1973, this mechanism anticipated the third family of quarks before
they were discovered. Together with a quantum field theory that
describes the electromagnetic, weak and strong interactions, it is a
key part of the standard model of particle physics. The present
Kobayashi–Maskawa source of CP violation, however, is itself too
small (see ref. 10 for example) to account for the dominance of
matter in the Universe. A search for other sources of CP violation,
in the neutrino sector or in new physics beyond the standard model,
is needed.

The decay BRKp proceeds through two major processes, illu-
strated in Fig. 1a and b. Figure 1a is called the colour-allowed tree
diagram, and the Kobayashi–Maskawa source of CP violation enters
via the so-called Vub (where ub represents the transition between u
and b quarks) matrix element that governs the !bb!uuW interaction
vertex. On the other hand, while all charge 2/3 quarks contribute
to the quantum ‘loop’, it is the virtual top quark that dominates
the amplitude of the process shown in Fig. 1b, which is usually called
the (strong) penguin diagram. The controlling matrix element pro-
duct VtbV

!
ts (where tb and ts represent the transitions between t and b

quarks and t and s quarks) is insensitive to the Kobayashi–Maskawa

source of CP violation. CP violation may arise from the interference
between these two amplitudes, similar to two waves interfering with
each other to produce a combined wave. However, this still depends
on the detailed dynamics of each process. It is a theoretical challenge
to describe how the quark level decay evolves into the observed
mesons. One of the advantages of studying a direct CP-violating
asymmetry, which is a ratio of decay rates, is that many of the experi-
mental systematic uncertainties cancel. Consequently, CP-violating
asymmetries provide information about the dynamics of B meson
decay, test different theoretical approaches, and probe new physics
beyond the standard model.

Compared to the dominant bRc decay amplitudes, the amplitude
of Fig. 1a is suppressed by the smallness of jVub/Vcbj, while Fig. 1b is
suppressed by the quantum loop amplitude. However, the two
amplitudes are of similar magnitude, allowing for large interference
(and hence appreciable CP violation) to occur. The price to pay is the
small branching fractions or decay rates to bemeasured. For instance,
out of a million neutral B0 mesons, only about 20 will decay into
K1p2, while for B1 mesons, only about 13 in a million will decay to
K1p0. Therefore, to search for CP violation, wemust producemanyB
mesons and detect themwith high efficiency. The Belle detector at the
KEKB11 asymmetric-energy (3.5 on 8.0GeV) e1e2 collider, operating
on the U(4S) resonance (which decays exclusively to a B!BB meson
pair) energy, was designed for such a purpose. The KEKB accelerator
is currently the brightest collider in the world, in which the record
instantaneous luminosity is equivalent to bombarding a 1 cm2 area
with 1.73 1034 particles per second. A detailed description of the
Belle detector (see Supplementary Information 1) can be found
elsewhere12. Here we report ourmeasurements of CP-violating asym-
metries for the BRK6p7, K6p0 and p6p0 modes, using 535 million
B!BB meson pairs collected with the Belle detector.

*A list of authors and their affiliations appears at the end of the paper.
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Figure 1 | Feynmandiagrams forBRKp,pp. TheB1(B0)meson consists of a
!bb quark and a u(d) quark, while its antiparticle, B{ !BB0ð Þ is made of a b quark
and a !uu !dd
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quark. Contributions from diagrams a and b are expected to be

dominant over those from c and d.
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t, t′ ?

Can see also in certain flavor transitions

Oeff ∼ GF mbs̄σ
µνGµνb Ceff ∼ finite (mt′ →∞)



With this motivation, look in detail at the low-energy 
effective action.  In particular, quantized topological 
action can be treated on its own

• Explicit gauged action for U(3)/U(2) (careful to 
include U(1) factors)

• By reduction, anomalous action for U(2)/U(1) (e.g. 
anomalous action for SM higgs NGB’s)

• Some simple manipulations that are fun to do at 
least once



RE: “SIMPLEST” 
complexity in defining topological actions come from manipulating five-
spheres inside the field space G/H 4

(a)

(b)

FIG. 1: The action corresponds to the area bounded by the
image of spacetime. Two different bounding surfaces are pic-
tured.

E. Counterterms and anomaly integration

The gauged WZW term for SU(2)×U(1)/U(1) in two
dimensions affords a simple context to see the equivalence
between “top down” anomaly integration and the preced-
ing “bottom up” approach. Here we find the necessary
counterterm for the integration to be possible.

Let us choose the orientation of Φ which breaks the
global SU(2) × U(1) symmetry as

〈Φ〉 =

(

0
1

)

. (34)

The components of the SU(2) × U(1) gauge bosons are
defined as in (20), and for the corresponding gauge trans-
formations in (6) we write:

ε + ε0 ≡

(

εB εC+

εC− εD

)

. (35)

The anomaly expression (22) then becomes

δΓWZW =
p

4π

∫

M2

dεBD + dεDB − dεC+C− − dεC−C+ .

(36)
We notice that δΓWZW vanishes when both the gauge
variation and the background gauge fields are restricted
to the unbroken U(1) subgroup—i.e., εC± = εD = 0 and
C± = D = 0. However, in the presence of arbitrary

C± and D fields, the action still has an anomalous gauge
variation even when εC± = εD = 0. We can find a coun-
terterm that preserves gauge invariance in the unbroken
fields for arbitrary background fields, and converts the
anomaly to the “covariant” form. This is the analog of
the Bardeen counterterm [14, 15], which for the present
case is

Γc(A, A0) = −ΓWZW (A, A0, Φ = 〈Φ〉) , (37)

where 〈Φ〉 is the orientation of Φ which breaks the global
symmetry. Taking 〈Φ〉 as in (34), and using (16), the
counterterm is [41]

Γc = −
p

4π

∫

M2

BD . (38)

With the addition of the counterterm, the gauge variation
becomes

δ(ΓWZW + Γc) =
p

4π

∫

M2

−2εDdB + εC+dC− + εC−dC+

− i
(

εC+C− − εC−C+
)

(B + D) ,
(39)

and we see that the resulting action is gauge invariant un-
der the unbroken subgroup, in the presence of arbitrary
background gauge fields[42].

For a general orientation of 〈Φ〉, the variation of the
complete action with counterterm is

δ(ΓWZW + Γc) =
p

4π

∫

M2

Tr

[

ε (dA − 2PdA0 + 2i[A, P ]A0)

+ ε0 (−dA0 + 2dAP )

]

≡

∫

M2

εaAa[A] , (40)

where in the last line A denotes the (covariant) anomaly,
and the sum runs over broken generators.

We remark in passing that since the action is well-
defined, by its topological construction, the gauge vari-
ation (22) is guaranteed to be a “consistent” anomaly.
That is,

∆a(x)Ab[A(y)]−∆b(y)Aa[A(x)] = fabcAc[A(x)]δ(x−y) ,
(41)

where fabc are the structure constants of SU(2) × U(1),
and ∆a are generators of gauge transformations on the
gauge fields:

∆a = −∂µ
δ

δAa
µ

− fabcAb
µ

δ

δAc
µ

. (42)

Adding the Bardeen counterterm does not change the
consistency of the anomaly, since it is again a well-defined
object (the reduction of the topological action to a con-
stant value for the meson field). Eq.(41) can be verified
to hold using the explicit form of the anomaly in (40).

Γ = C

∫

M5
d5x εABCDEωABCDE

5-form that is 
-globally invariant (action is G invariant)
-closed (action is four-dimensiona) 

π4(G/H) = 0 given chiral field U(x), i.e., image of spacetime, can form 
a 5-d surface with image of spacetime as boundary⇒

π5(G/H) = Z ⇒ “winding number” assigned to inequivalent mappings

nontrivial action corresponds to 
existence of closed, but not exact, 
globally invariant five-form

ω ∈ H5(G/H,R)
dω = 0
ω != dη

4

(a)

(b)
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anomaly to the “covariant” form. This is the analog of
the Bardeen counterterm [14, 15], which for the present
case is

Γc(A, A0) = −ΓWZW (A, A0, Φ = 〈Φ〉) , (37)

where 〈Φ〉 is the orientation of Φ which breaks the global
symmetry. Taking 〈Φ〉 as in (34), and using (16), the
counterterm is [41]

Γc = −
p

4π

∫

M2

BD . (38)

With the addition of the counterterm, the gauge variation
becomes

δ(ΓWZW + Γc) =
p

4π

∫

M2

−2εDdB + εC+dC− + εC−dC+

− i
(

εC+C− − εC−C+
)

(B + D) ,
(39)

and we see that the resulting action is gauge invariant un-
der the unbroken subgroup, in the presence of arbitrary
background gauge fields[42].

For a general orientation of 〈Φ〉, the variation of the
complete action with counterterm is

δ(ΓWZW + Γc) =
p

4π

∫

M2

Tr

[

ε (dA − 2PdA0 + 2i[A, P ]A0)

+ ε0 (−dA0 + 2dAP )

]

≡

∫

M2

εaAa[A] , (40)

where in the last line A denotes the (covariant) anomaly,
and the sum runs over broken generators.

We remark in passing that since the action is well-
defined, by its topological construction, the gauge vari-
ation (22) is guaranteed to be a “consistent” anomaly.
That is,

∆a(x)Ab[A(y)]−∆b(y)Aa[A(x)] = fabcAc[A(x)]δ(x−y) ,
(41)

where fabc are the structure constants of SU(2) × U(1),
and ∆a are generators of gauge transformations on the
gauge fields:

∆a = −∂µ
δ

δAa
µ

− fabcAb
µ

δ

δAc
µ

. (42)

Adding the Bardeen counterterm does not change the
consistency of the anomaly, since it is again a well-defined
object (the reduction of the topological action to a con-
stant value for the meson field). Eq.(41) can be verified
to hold using the explicit form of the anomaly in (40).



Examples

G = SU(N)L × SU(N)R , H = SU(N)V , G/H ∼= SU(N)

U(x)→ eiεLU(x)e−iεR

π4(SU(N)) = 0

π5(SU(N)) = Z 〈Ψ̄LΨR〉 #= 0
ΨL,R → eiεL,RΨL,R

U = eiπata/fπ U†U = 1

fields:



π5(S5) = Z

For SU(3)/SU(2), the field space is the five-sphere

G = SU(3) , H = SU(2) , G/H = S5

π4(S5) = 0

H → eiεH

〈H〉 =




0
0
1





Φ→ eiεΦ

Φ = eiπ




0
0
1



 =




φ1 + iφ2

φ3 + iφ4

φ5 + iφ6



 Φ†Φ =1

fields:



five forms

Properly normalized form integrates to 2π on the simplest nontrivial embedding

Should find exactly one nontrivial, globally invariant five form in each case

Tr(. . . U† . . . U . . . U† . . . U . . . )
sprinkle five derivatives into: 

ω =
i

240π2
Tr

[
(U†dU)5

]

. . .Φ† . . .Φ . . .Φ† . . .Φ
sprinkle five derivatives into: 

(d2 = 0, d(Φ†Φ) = 0)

(d2 = 0, d(U†U) = 0)

1√
1−

∑5
i=1(φi)2

dφ1dφ2dφ3dφ4dφ5

ω = 2π
1
π2

[
− i

8
Φ†dΦ(dΦ†dΦ)2

]

volume of 5-sphere



• 3 is special: SU(N)/SU(N − 1) = S2N−1 , π5(S2N−1) = 0(N > 3)

• will see that anomalous variation of gauged action corresponds to even 
number of fermions

notes

• will see that gauged action is equivalent to (a limit of) the SU(3)xSU(3)/
SU(3) action (eating and decoupling) 



2-D EXAMPLE
To get a handle on the algebra, consider one dimension lower 

G = SU(2) , H = identity , G/H ∼= S3

H → eiεH

〈H〉 =
(

0
1

)π2(S3) = 0

Φ→ eiεΦ Φ = eiπ

(
0
1

)
=

(
φ1 + iφ2

φ3 + iφ4

)

ω = 2π
1

2π2

[
1
2
Φ†dΦdΦ†dΦ

]

volume of 3-sphere 1√
1−

∑3
i=1(φi)2

dφ1dφ2dφ3

4

(a)

(b)

FIG. 1: The action corresponds to the area bounded by the
image of spacetime. Two different bounding surfaces are pic-
tured.

E. Counterterms and anomaly integration

The gauged WZW term for SU(2)×U(1)/U(1) in two
dimensions affords a simple context to see the equivalence
between “top down” anomaly integration and the preced-
ing “bottom up” approach. Here we find the necessary
counterterm for the integration to be possible.

Let us choose the orientation of Φ which breaks the
global SU(2) × U(1) symmetry as

〈Φ〉 =

(

0
1

)

. (34)

The components of the SU(2) × U(1) gauge bosons are
defined as in (20), and for the corresponding gauge trans-
formations in (6) we write:

ε + ε0 ≡

(

εB εC+

εC− εD

)

. (35)

The anomaly expression (22) then becomes

δΓWZW =
p

4π

∫

M2

dεBD + dεDB − dεC+C− − dεC−C+ .

(36)
We notice that δΓWZW vanishes when both the gauge
variation and the background gauge fields are restricted
to the unbroken U(1) subgroup—i.e., εC± = εD = 0 and
C± = D = 0. However, in the presence of arbitrary

C± and D fields, the action still has an anomalous gauge
variation even when εC± = εD = 0. We can find a coun-
terterm that preserves gauge invariance in the unbroken
fields for arbitrary background fields, and converts the
anomaly to the “covariant” form. This is the analog of
the Bardeen counterterm [14, 15], which for the present
case is

Γc(A, A0) = −ΓWZW (A, A0, Φ = 〈Φ〉) , (37)

where 〈Φ〉 is the orientation of Φ which breaks the global
symmetry. Taking 〈Φ〉 as in (34), and using (16), the
counterterm is [41]

Γc = −
p

4π

∫

M2

BD . (38)

With the addition of the counterterm, the gauge variation
becomes

δ(ΓWZW + Γc) =
p

4π

∫

M2

−2εDdB + εC+dC− + εC−dC+

− i
(

εC+C− − εC−C+
)

(B + D) ,
(39)

and we see that the resulting action is gauge invariant un-
der the unbroken subgroup, in the presence of arbitrary
background gauge fields[42].

For a general orientation of 〈Φ〉, the variation of the
complete action with counterterm is

δ(ΓWZW + Γc) =
p

4π

∫

M2

Tr

[

ε (dA − 2PdA0 + 2i[A, P ]A0)

+ ε0 (−dA0 + 2dAP )

]

≡

∫

M2

εaAa[A] , (40)

where in the last line A denotes the (covariant) anomaly,
and the sum runs over broken generators.

We remark in passing that since the action is well-
defined, by its topological construction, the gauge vari-
ation (22) is guaranteed to be a “consistent” anomaly.
That is,

∆a(x)Ab[A(y)]−∆b(y)Aa[A(x)] = fabcAc[A(x)]δ(x−y) ,
(41)

where fabc are the structure constants of SU(2) × U(1),
and ∆a are generators of gauge transformations on the
gauge fields:

∆a = −∂µ
δ

δAa
µ

− fabcAb
µ

δ

δAc
µ

. (42)

Adding the Bardeen counterterm does not change the
consistency of the anomaly, since it is again a well-defined
object (the reduction of the topological action to a con-
stant value for the meson field). Eq.(41) can be verified
to hold using the explicit form of the anomaly in (40).

Γ(φ) =
∫

ω = “area”

π3(S3) = Z



gauging the 3-sphere
Let’s try to gauge by brute force

Φ→ eiεΦ

δΓ0 =
ip

2π

∫

M3
Φ†dεΦdΦ†dΦ− Φ†dΦΦ†dεdΦ +Φ †dΦdΦ†dεΦ

=
ip

2π

∫

M3
d
[
Φ†εΦdΦ†dΦ +Φ †dΦΦ†εdΦ +Φ †dΦdΦ†εΦ

]

−2εA
[
dΦ†dΦ(Φ†σAdΦ + dΦ†σAΦ)

]

Should find something 2-dimensional by stokes theorem, but have a left-over 
piece:

d(Φ†σAΦ)dΦ†dΦ =0
But use a magic identity involving Pauli matrices and fields on three-sphere:

δΓ0 =
ip

2π

∫

M2
Φ†εΦdΦ†dΦ +Φ †dΦΦ†εdΦ +Φ †dΦdΦ†εΦ

Should find something globally invariant (vanishes for const. ε):

dΦ†σAdΦ = d(Φ†σAΦ)Φ†dΦ− Φ†σAΦdΦ†dΦ

Again, a magic identity saves the day 



δΓ0 =
ip

4π

∫

M2
Φ†dεdΦ + dΦ†dεΦ

Finally, integrate by parts, 

Variation is 2-d and local, can be cancelled by a gauge field with 

A→ eiε(A + id)e−iε

Γ1 =
ip

4π

∫

M2
−Φ†AdΦ− dΦ†AΦ

δ(Γ0 + Γ1) =
p

2π

∫

M2

1
2
Tr(Adε)

Result is not gauge invariant, but variation is independent of pions: 

ΓWZW = Γ0 + Γ1 =
∫

M3
ω +

ip

4π

∫

M2
−Φ†AdΦ− dΦ†AΦ

Gauged action:

Non-uniqueness due to gauge-invariant operator: 
ΓG.I. = c

∫

M2
Φ†(dA− iA2)Φ



equivalence to SU(2)xSU(2)/SU(2)

There is an exact equivalence of the preceding action to the SU(2)LxSU(2)R/SU(2) 
action in two-dimensions 

ΓWZW = − N

12π

∫

M3
Tr(U†dUU†dUU†dU) +

N

4π

∫

M2
Tr

[
−iALα− iARβ + ALUARU†]

ΓWZW (N = p, AL = A, AR = 0, U) = ΓWZW (p, A,Φ)

N = p , AL = A , AR = 0 , Φ = U

(
0
1

)

proof:

−p

12π
Tr(α3) =

p

2π
Φ†dΦdΦ†dΦ

−ip

4π
Tr(Aα) =

−ip

4π
(Φ†AdΦ + dΦ†AΦ)

Tr(PαPα2) =
1
6
Tr(α3)

Tr[P (αβ − βα)] = Tr(αβ) ⇒
P 2 = P , e.g. : P =

(
0 0
0 1

)



• equivalence is less trivial in four-dimensional example: 5 NGB’s of SU(3)/
SU(2) ↔ 8 NGB’s of SU(3)xSU(3)/SU(3)  ⇒ “eating and decoupling”

notes
• U(1) factors straightforward

Φ→ ei(ε+ε0)Φ

AL = A−A0 , AR = −2A0

(
0 0
0 1

)For equivalence: 

• can show that it is always possible to add terms with gauge fields such that 
total variation is independent of pions, by either of two methods: 

- differential geometry

- equivalence to anomaly-integration expression a la Wess-Zumino

δΓ ∼
∫

ξ{ab}dεaAb , dξ{ab} ∼ i{aib}ω = 0



4-D EXAMPLE
We’ve already found the ungauged topological action (area on five-sphere), and
by general arguments know that we can brute-force gauge. 

Lots of magical identities between Gellmann matrices and complex triplets 

Convenient to organize with diff. geom. (becomes slightly less magical)

Will spare you the algebra, 



ΓWZW (Φ, A,A0) = Γ0(Φ) +
p

4π2

∫

M4

4∑

i=1

Li + LG.I.

L1 = A0Φ†dΦdΦ†dΦ−
(
Φ†AdΦ + dΦ†AΦ

)
dΦ†dΦ ,

L2 = iA0dA0Φ†dΦ− idA0Φ†AΦΦ†dΦ− 2iA0Φ†AΦdΦ†dΦ +
i

2
[
(dΦ†AΦ)2 − (Φ†AdΦ)2

]

+
i

4
[
Φ†(AdA + dAA)dΦ + dΦ†(AdA + dAA)Φ

]
− i

2
Φ†(AdA + dAA)ΦΦ†dΦ− i

2
Tr(AdA)Φ†dΦ

+
i

4
[
Φ†dAΦ(dΦ†AΦ +Φ †AdΦ) + Φ†AΦ(Φ†dAdΦ− dΦ†dAΦ)

]
,

L3 = A0dA0Φ†AΦ + A0

[
−Φ†AΦd(Φ†AΦ) +

1
3
Tr(AdA)

]
− 1

6
Φ†A2Φ(Φ†AdΦ + dΦ†AΦ)

+
1
6
Φ†AΦ(Φ†A2dΦ− dΦ†A2Φ) +

1
6
Φ†(dAA2 −A2dA)Φ +

1
3
(Φ†A3dΦ + dΦ†A3Φ)− 2

3
Φ†A3ΦΦ†dΦ

− 1
3
Tr(A3)Φ†dΦ− 1

2
Φ†(AdA + dAA)ΦΦ†AΦ− 1

3
Tr(AdA)Φ†AΦ ,

L4 = − i

4
A0Tr(A3)− 3i

4
Φ†AΦΦ†A3Φ− i

4
Φ†AΦTr(A3) .

LG.I. = c1

[
Φ†(dA− iA2)Φ

]2

+ c2 iΦ†(dA− iA2)ΦDΦ†DΦ

+ c3 Φ†(dA− iA2)2Φ

+ c4 Φ†DΦ
[
Φ†(dA− iA2)DΦ− (DΦ†)(dA− iA2)Φ

]
,

+ c5 dA0Φ†(dA− iA2)Φ



Left-over gauge variation (=anomaly): 

δΓ = − p

12π2

∫

M4
Tr

{
ε

[
(dA)2 − i

2
d(A3)

]
− 1

2
ε0

[
(dA)2 − i

2
d(A3)

]
− 1

2
ε

[
2dA dA0 −

i

2
d(A0A

2)
] }

+ 3ε0(dA0)2

= − 2p

24π2

∫

M4
Tr

{ (
ε− 1

2
ε013

) [(
dA− 1

2
dA013

)2

− i

2
d

[(
A− 1

2
A013

)3
]] }

−
(
−3

2
ε0

) (
−3

2
dA0

)2

= anomaly of triplet L, singlet R fermion

ΨL =




ψ1L

ψ2L

ψ3L



 , qR

ΨL → ei(ε−ε0/2)ΨL , qR → e−3iε0/2qR



equivalence to SU(3)xSU(3)/SU(3)

SU(3)/SU(2) ∼ SU(3)xSU(3)/SU(3), but kaons, eta without the pions.   
Make this explicit? 

In fact, exact equivalence: 

ΓSU(3)/SU(2)(p, Φ, A) = ΓSU(3)×SU(3)/SU(3)(2p, Ũ , ÃL, ÃR)

ξ → eiεξe−iε′(ε,ξ)

Ũ = ξ ,

ÃL = A ,

ÃR =
3∑

A=1

λA

2
Tr(λA[ξ†(A + id)ξ]) ,

In terms of nonlinear realization of SU(3) on SU(3)/SU(2):

Dictionary:
projects onto SU(2)



To prove equivalence, first note that gauge variations are identical 
(ignore U(1) factor to start) 

Ũ = ξ ,

ÃL = A ,

ÃR =
3∑

A=1

λA

2
Tr(λA[ξ†(A + id)ξ]) ,

ξ → eiεξe−iε′(ε,ξ)

AL, AR transform with ε, ε’, respectively

δΓ ∼
∫

Tr
[
ε(dÃL)2 − ε′(dÃR)2

]
∼

∫
Tr

[
ε(dA)2

]

no continuous anomaly in SU(2)

Can extend to include U(1) using 

AL = ÃL −
1
2
A0 , AR = ÃR −

3
2
A0




0

0
1







Motivation for this limit is “eating and decoupling”

Consider strong coupling of SU(2)R gauge field 
−1
4g2

F 2
µν → 0

Fields become nondynamical, enforcing the locking condition

δ

δAR
Tr

[
(∂µU − iALµU + iUARµ)(∂µU† + iUALµ − iARµU)

]
= 0

⇒ AR =
∑3

A=1
λA
2 Tr(λA[U†(A + id)U ])

Work in gauge where AR eats the pions and decouples: 

U = ξ ∼ exp
[
i

(
η K

K† −2η

)]

• even quantization reflects π4(SU(2)) = Z2 != 0

• inability to extend to SU(4)/SU(3), etc:  can’t gauge SU(N)L (N>2) 



Two actions have same gauge transformation:  all that remains is to fix the 
coefficients of the gauge-invariant operators, e.g. by considering actions at 

ξ = 1 Φ =




0
0
1





c1 = c2 = c3 = c5 = 0 , c4 =
7
12

Straightforward but tedious calculation: 

Note: on SU(3)xSU(3)/SU(3) side, an ambiguity due to gauge-invariant 
operator:

Fix this by imposing parity (e.g. in QCD) 

L ∼ εµνρσTr(UFµν
R U†F ρσ

L )



Reduction to SU(2)xU(1)/U(1)

A classic construction of the anomalous action of nf=2 QCD employs a reduction 
of the WZW term for nf=3

π5(SU(2)) = 0 π5(SU(3)) = Z

A similar construction in the present case gives a topological construction of 
anomalous action for SM-like Higgs field 

Φ =
(

0
H

)
, A =

(
0

W

)
, A0 =

1
2
B



AL = W + yB , AR =
(

y +
σ3

2

)
B

Anomaly of fermions: 

E.g., consider integrating out a generation of quarks (or leptons), consisting of
L and R doublet of fermions with 

δΓ = − y

24π2

∫

M4
Tr

{
εW

[
2dWdB − i

2
d(BW 2)

]

+εB

[
(dW )2 − i

2
d(W 3)

] }
− 3

2
εB(dB)2

Matched by previous expression provided 

p = −2y

⇒ integer p sufficient for y=-1/2, y= 3 x (1/6)



Gauge invariant operators can be fixed by enforcing custodial symmetry (e.g. 
degenerate limit for mass of heavy quarks, or leptons): 

c1 −
1
2
c2 = c3 = c5 = 0 , c4 =

1
2

LG.I. = c1

[
Φ†(dA− iA2)Φ

]2

+ c2 iΦ†(dA− iA2)ΦDΦ†DΦ

+ c3 Φ†(dA− iA2)2Φ

+ c4 Φ†DΦ
[
Φ†(dA− iA2)DΦ− (DΦ†)(dA− iA2)Φ

]
,

+ c5 dA0Φ†(dA− iA2)Φ

E.g., integrate a complete heavy SM generation (and heavy higgs boson): these 
operators summarize what remains of terms with epsilon tensor (remaining 
actions cancel) 
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(No) Skyrmion

Recall in QCD, conserved baryon current follows from the existence of 
a globally invariant 3-form

J ∼ Tr
[
(U†dU)3

]

Jµ ∼ εµνρσTr
[
(U†∂νU)(U†∂ρU)(U†∂σU)

]

∂µJµ ∼ d
(
Tr

[
(U†dU)3

])
= 0

In SU(3)/SU(2), no such current: 

(Φ†dΦ)3 = 0

d
[
Φ†dΦdΦ†dΦ

]
!= 0

reflects the fact that π3(SU(N)) = Z π3(S5) = 0but

d(U†U) = 0



SUMMARY

• fully gauged anomalous action for SU(3)/SU(2), complete with 
U(1) factors, gauge-invariant operators

• interesting equivalences, eating and decoupling, factor of 2 in 
quantization, absence of skyrmion

• applications to extensions of EW standard model, like little 
higgs

• topological derivation of anomalous action for SM-like Higgs 
field




